Fingerprinting Digital Circuits on Programmable Hardware

Abstract

Advanced CAD tools and high-density VLSI technologies have combined to create a new market for reusable digital designs. The economic viability of the new core-based design paradigm is pending on the development of techniques for intellectual property protection. A design watermark is a permanent identification code that is difficult to detect and remove, is an integral part of the design, and has only nominal impact on performances and cost of design. Field Programmable Gate Arrays (FPGAs) present a particularly interesting set of problems and opportunities, because of their flexibility. We propose the first technique that leverages the unique characteristics of FPGAs to protect commercial investment in intellectual property through fingerprinting. A hidden encrypted message is embedded into the physical layout of a digital circuit when it is mapped into the FPGA. This message uniquely identifies both the circuit origin and original circuit recipient, yet is difficult to detect and/or remove. While this approach imposes additional constraints on the back-end CAD tools for circuit place and route, experiments involving a number of industrial-strength designs indicate that the performance impact is minimal.

Topics

    8 Figures and Tables

    Download Full PDF Version (Non-Commercial Use)